
Inheritance and Polymorphism

Unit Testing

 Main reasons for inheritance
◦ Organization

◦ Code reuse

 Why not just copy and paste the code?

 The usual implication of inheritance: IS-A
◦ If we write A extends B, it says that an object of

type A IS-A object of type B, and can be used as if it
is a B.

◦ At the very least, it means that A has the same
operations as B (perhaps implemented a little bit
differently).

◦ What if A doesn’t override one of B’s methods?

◦ Can A remove one of B’s methods?

 class A extends B
◦ We say that A is a subclass of B and B is the superclass

of A.
◦ A class can only have one superclass.
◦ If you do not include extends in a class's definition, that

class extends Object.

 A has all of the fields and methods B, plus
◦ perhaps some new fields
◦ almost always some new or overridden methods.

 If A's constructor explicitly Call's B's constructor.
◦ Use super as the name of the "constructor call".
◦ That call must be the first statement in A's constructor

code.

 Extension.

 The subclass has the same operations and
can use some of the same code as its parent
class (another name for superclass).

 It is closely related to the parent class,
though there may not be a strict IS-A
relationship.

 Example:
◦ class Point3D extends Point

public class Point3D extends Point {

private double z;

public Point3D(double x, double y, double z){

super(x, y);

this.z = z;

}

public double getZ() {

return this.z;

}

@Override

public boolean equals(Object other){

if (other == null)

return false;

if (!(other instanceof Point3D))

return false;

return super.equals(other) && this.z == ((Point3D)other).z;

}

public double distance (Point3D other){

// what's going to happen if other is Point2D?

double distance2D = super.distance(other);

double zDist = this.z - other.z;

return Math.sqrt(distance2D*distance2D + zDist*zDist);

}

@Override

public String toString(){

String string2D = super.toString();

String renamed = string2D.replace("int", "int3D");

return renamed.replace("]", String.format(",%.2f]", this.z));

}

}

• Public – Accessible by any other class in any package.

• Private – Accessible only within the class.

• Protected – Accessible only by classes within the same
package and any subclasses in other packages.
• (For this reason, some choose not to use protected, but

use private with accessors)

• Default (No Modifier) – Gives package access:
accessible by classes in the same package but not by
classes in other packages.
• Use sparingly! Will be considered an error, unless good

reason given for using it. (I will sometimes omit only to
fit stuff on slides)

 … to find a common ancestor for Circle and
Rectangle?
◦ What is a good name for it?

◦ What fields/methods can it have?

 We really need an Abstract class. An example
soon …

 Gives part of a class definition
◦ Intended for other classes to extend it

 Not all methods are defined.
◦ For some we just have method headers with a

semicolon.

◦ Those methods must be declared abstract.

 Cannot directly instantiate an abstract class.

 Can instantiate a concrete subclass.
◦ The abstract methods must be defined!

 The ultimate abstract class!
 Only contains constant definitions and method

headers. No fields, no constructors, no method
definitions.

 All methods in an interface are public and abstract,
so it is not necessary to use those keywords in the
method headers at all.

 An interface serves as a contract.
 A class can declare that it implements the interface,

and it proves this by implementing all of the methods
in the interface (i.e. it fulfills the contract).

 A class can implement any number of interfaces.
 In a moment we will look at Weiss's example of

abstract classes and interfaces.

 Actually a simplification of Comparable that does
not use type parameters
◦ We'll discuss type parameters later.

 public interface Comparable {

int compareTo(Comparable other);

}

◦ Returns a positive integer if this > other,
negative if this < other, zero if this ==other.

 Any class that says it implements Comparable must
include the definition of a compareTo() method
with the given behavior.

Figure 4.10
The hierarchy of shapes used in an inheritance example

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Actually, we can
(and will) do
better, making
Shape be an
interface, and
defining a new
abstract class,
AbstractShape.

 Let’s look at Shape, AbstractShape, Circle,
Rectangle, and Square.

/* javadoc is omitted in many in-class examples so

code will fit on PowerPoint slides. */

public interface Shape extends Comparable {

public double area();

public double perimeter();

public double semiPerimeter();

}

These are examples of methods that can apply to every shape.
Every object that calls itself a Shape must implement these
methods.

public abstract class AbstractShape implements Shape

{

public abstract double area();

public abstract double perimeter();

/* required by the Comparable interface */

public int compareTo(Object rhs) {

double diff = this.area() - ((Shape)rhs).area();

if(diff == 0)

return 0;

else if(diff < 0)

return -1;

else

return 1;

}

public double semiPerimeter() {

return this.perimeter() / 2;

}

}

Note that we can
use area and
perimeter in
the definitions
of compareTo
and
semiperimeter,
even though the
former two
methods are not
actually
implemented in
this class.

compareTo is not
required to return these
specific values
(-1 and 1).
Why do you think Weiss
does it this way?

public class Circle extends AbstractShape {

private double radius;

public Circle(double rad) {

this.radius = rad;

}

public double area() {

return Math.PI * this.radius * this.radius;

}

public double perimeter() {

return 2 * Math.PI * this.radius;

}

@Override

public String toString() {

return "Circle: " + this.radius;

}

}

implements the
abstract methods

overrides a
method from the
Object class

implements a
constructor

implements the
abstract methods

overrides a
method from the
Object class

Methods unique
to this class

public class Rectangle extends AbstractShape {

private double length;

private double width;

public Rectangle(double len, double wid) {

this.length = len;

this.width = wid;

}

public double area() {

return this.length * this.width;

}

public double perimeter() {

return 2 * (this.length + this.width);

}

@Override

public String toString() {

return "Rectangle: " + this.length +

" " + this.width;

}

public double getLength() {

return this.length;

}

public double getWidth() {

return this.width;

}

}

 Square inherits almost all of its
functionality from Rectangle.

public class Square extends Rectangle {

public Square(double side) {

super(side, side);

}

public String toString() {

return "Square: " + this.getLength();

}

}

 Sound familiar to anyone?

public class Workaholic extends Worker {

public void doWork() {

super.doWork();

drinkCoffee();

super.doWork();

}

}

 How about this one?

public class RoseStudent extends Worker {

public void doWork() {

while (!isCollapsed()) {

super.doWork();

drinkCoffee();

}

super.doWork();

}

}

 The roots of the word polymorphism:
◦ poly:

◦ morph:

 Why is this an appropriate name for this
concept?

 How do you implement code that uses
polymorphism?

dynamic binding of method calls

to actual methods.

The class of the actual object is

used to determine which class's

method to use.

We'll see it in the ShapesDemo

code.

 In main(), notice the array of Shapes.

 Please write the missing methods.

 In a bird and parrot example, consider a bird method:
static void printCall(Bird bird) {

System.out.println(bird.call);

}

 Generic: printBirdCall expects a Bird, but any type of
bird is OK.

 Cannot write Parrot p = new Bird(); //there’s not
enough info!

 However, without casting, b can only use bird
methods.

Bird b = new Parrot();

printBirdCall(b)

Parrot p = new Parrot();

printBirdCall(p)

 If we know that b is a Parrot, we can cast it and use Parrot
methods (like speak):
((Parrot)b).speak()

 At runtime, if b is just a Bird, the JVM will throw a
ClassCastException.

 To test this, use instanceof:
if (b instanceof Parrot) { ((Parrot)b).speak()); }

Hourly Employee h = new HourlyEmployee("Wilma Worker", new
Date("October", 16, 2005), 12.50, 170);

SalariedEmployee s = new SalariedEmployee("Mark Manager", new
Date("June", 4, 2006), 40000);

Employee e = null;

if (getWeekDay().equals(“Saturday”))
e = h;

else

e = s;

System.out.println(e);

When can I tell which value e will have, at compile time or run time?

So Java defers the decision about which version of toString() will be used until

then: it binds the actual method call used as late as possible.

Late Binding is also called dynamic dispatch or dynamic binding.

Note: it uses the most specific version of the method it can.

 How much testing to do?

◦ "Test until fear turns to boredom" – JUnit FAQ.

 JUnit is a collection of Java classes that makes
it easier to build and run unit tests

 Do the Unit Testing Exercise, linked from the
schedule page

 Finish for Homework if you do not finish here.

 If you do finish this early, work on BigRational.

 Reading about GUIs.

 ANGEL Quiz over ch 4.

 Finish the in-class Unit Testing exercise if you didn't already.

 Finish BigRational.

 Written problems.

